Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1998 May 22;273(21):13331-8.

Oxidative stress inhibits calpain activity in situ.

Author information

  • 1Department of Psychiatry, University of Alabama at Birmingham, Birmingham, Alabama 35294-0017, USA.


In this study, the effects of oxidative stress on calpain-mediated proteolysis and calpain I autolysis in situ were examined. Calpain activity was stimulated in SH-SY5Y human neuroblastoma cells with the calcium ionophore, ionomycin. Calpain-mediated proteolysis of the membrane-permeable fluorescent substrate N-succinyl-L-leucyl-L-leucyl-L-valyl-L-tyrosine-7-amido-4-methylcouma rin, as well as the endogenous protein substrates microtubule-associated protein 2, tau and spectrin, was measured. Oxidative stress, induced by addition of either doxorubicin or 2-mercaptopyridine N-oxide, resulted in a significant decrease in the extent of ionophore-stimulated calpain activity of both the fluorescent compound and the endogenous substrates compared with control, normoxic conditions. Addition of glutathione ethyl ester, as well as other antioxidants, resulted in the retention/recovery of calpain activity, indicating that oxidation-induced calpain inactivation was preventable/reversible. The rate of autolytic conversion of the large subunit of calpain I from 80 to 78 to 76 kDa was decreased during oxidative stress; however, the extent of calpain autolysis was not altered. These data indicate that oxidative stress may reversibly inactivate calpain I in vivo.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk