Format

Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 1998 May 12;95(10):5752-6.

A bacterial two-hybrid system based on a reconstituted signal transduction pathway.

Author information

  • 1Unité de Biochimie Cellulaire (Centre National de la Recherche Scientifique, Unité de Recherche Associée 1129), Institut Pasteur, 75724 Paris Cedex 15, France.

Abstract

We describe a bacterial two-hybrid system that allows an easy in vivo screening and selection of functional interactions between two proteins. This genetic test is based on the reconstitution, in an Escherichia coli cya strain, of a signal transduction pathway that takes advantage of the positive control exerted by cAMP. Two putative interacting proteins are genetically fused to two complementary fragments, T25 and T18, that constitute the catalytic domain of Bordetella pertussis adenylate cyclase. Association of the two-hybrid proteins results in functional complementation between T25 and T18 fragments and leads to cAMP synthesis. Cyclic AMP then triggers transcriptional activation of catabolic operons, such as lactose or maltose, that yield a characteristic phenotype. In this genetic test, the involvement of a signaling cascade offers the unique property that association between the hybrid proteins can be spatially separated from the transcriptional activation readout. This permits a versatile design of screening procedures either for ligands that bind to a given "bait," as in the classical yeast two-hybrid system, or for molecules or mutations that block a given interaction between two proteins of interest.

PMID:
9576956
[PubMed - indexed for MEDLINE]
PMCID:
PMC20451
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk