Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1998 May 15;273(20):12128-34.

Arterial blood pressure responses to cell-free hemoglobin solutions and the reaction with nitric oxide.

Author information

  • 1Department of Medicine, School of Medicine, University of California, San Diego, Veterans Affairs Medical Center, San Diego, California 92161, USA. rrohlfs@ucsd.edu

Abstract

Changes in mean arterial pressure were monitored in rats following 50% isovolemic exchange transfusion with solutions of chemically modified hemoglobins. Blood pressure responses fall into three categories: 1) an immediate and sustained increase, 2) an immediate yet transient increase, or 3) no significant change either during or subsequent to exchange transfusion. The reactivities of these hemoglobins with nitric monoxide (.NO) were measured to test the hypothesis that different blood pressure responses to these solutions result from differences in .NO scavenging reactions. All hemoglobins studied exhibited a value of 30 microM-1 s-1 for both .NO bimolecular association rate constants and the rate constants for .NO-induced oxidation in vitro. Only the .NO dissociation rate constants and, thus, the equilibrium dissociation constants varied. Values of equilibrium dissociation constants ranged from 2 to 14 pM and varied inversely with vasopressor response. Hemoglobin solutions that exhibited either transient or no significant increase in blood pressure showed tighter .NO binding affinities than hemoglobin solutions that exhibited sustained increases. These results suggest that blood pressure increases observed upon exchange transfusion with cell-free hemoglobin solutions can not be the result of .NO scavenging reactions at the heme, but rather must be due to alternative physiologic mechanisms.

PMID:
9575158
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk