Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Mol Biol. 1998 May 1;278(2):349-67.

Quick-freeze deep-etch electron microscopy of the actin-heavy meromyosin complex during the in vitro motility assay.

Author information

  • 1Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, 108, Japan.

Abstract

Since mica is a substitute for glass in the in vitro actin motility assay, I examined the structure of heavy meromyosin (HMM) crossbridges supporting actin filaments by quick-freeze deep-etch replica electron microscopy. This method was capable of resolving the inter-domain cleft of the monomeric actin molecule. HMM heads that are not bound to actin, when observed by this technique, were straight and elongated in the absence of ATP but strongly kinked upon addition of ATP or ADP.inorganic vanadate to produce the putative long-lived analog of HMM-ADP.inorganic phosphate. The low-magnification image of the ATP-containing acto-HMM preparation showed features characteristic of sliding actin filaments on glass coverslips. At high magnification, all the HMM molecules were found attached to actin by one head with the majority projecting perpendicular to the filament axis, whereas in the absence of ATP, HMM exhibited two-head binding with a preponderance of molecules tilted at 45 degrees. Detailed examination of the shape of HMM heads involved in sliding showed a rounded, and flat appearance of the tip and comparatively thin neck portion as if the heads grasp actin filament, in contrast to rigor crossbridges which have a pear-shaped configuration with more gradual taper. Such configurations of HMM heads were essentially the same as I observed previously on acto-myosin subfragment-1 (S1) by the same technique, except for the presence of an additional neck portion of HMM which makes interpretaion of the images easier. Interestingly, under actively sliding conditions, very few heads were tilted in the rigor configuration. At first glance, the addition of ADP to the rigor-complex gave images rather like those obtained with ATP, but they turned out to be different. The contribution of the structural change of crossbridges to the force development is discussed.

Copyright 1998 Academic Press Limited.

PMID:
9571057
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk