Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Neurosci. 1998 May 15;18(10):3738-48.

Two phases of rod photoreceptor differentiation during rat retinal development.

Author information

  • 1Department of Genetics and Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA.

Abstract

We have conducted a comprehensive analysis of the relative timing of the terminal mitosis and the onset of rhodopsin expression in rod precursors in the rat retina in vivo. This analysis demonstrated that there are two distinct phases of rod development during retinal histogenesis. For the majority of rod precursors, those born on or after embryonic day 19 (E19), the onset of rhodopsin expression was strongly correlated temporally with cell cycle withdrawal. For these precursors, the lag between the terminal mitosis and rhodopsin expression was measured to be 5.5-6.5 d on average. By contrast, for rod precursors born before E19, the lag was measured to be significantly longer, averaging from 8.5 to 12.5 d. In addition, these early-born rod precursors seemed to initiate rhodopsin expression in a manner that was not correlated temporally with the terminal mitosis. In these cells, onset of rhodopsin expression appeared approximately synchronous with later-born cells, suggesting a synchronous recruitment to the rod cell fate induced by environmental signals. To examine this possibility, experiments in which the early-born precursors were exposed to a late environment were conducted, using a reaggregate culture system. In these experiments, the early-born precursors appeared remarkably uninfluenced by the late environment with respect to both rod determination and the kinetics of rhodopsin expression. These results support the idea that intrinsically distinct populations of rod precursors constitute the two phases of rod development and that the behavior exhibited by the early-born precursors is intrinsically programmed.

PMID:
9570804
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk