Send to:

Choose Destination
See comment in PubMed Commons below
Mol Cell Biol. 1998 May;18(5):2867-75.

Axil, a member of the Axin family, interacts with both glycogen synthase kinase 3beta and beta-catenin and inhibits axis formation of Xenopus embryos.

Author information

  • 1Department of Biochemistry, Hiroshima University School of Medicine, Japan.


Using a yeast two-hybrid method, we identified a novel protein which interacts with glycogen synthase kinase 3beta (GSK-3beta). This protein had 44% amino acid identity with Axin, a negative regulator of the Wnt signaling pathway. We designated this protein Axil for Axin like. Like Axin, Axil ventralized Xenopus embryos and inhibited Xwnt8-induced Xenopus axis duplication. Axil was phosphorylated by GSK-3beta. Axil bound not only to GSK-3beta but also to beta-catenin, and the GSK-3beta-binding site of Axil was distinct from the beta-catenin-binding site. Furthermore, Axil enhanced GSK-3beta-dependent phosphorylation of beta-catenin. These results indicate that Axil negatively regulates the Wnt signaling pathway by mediating GSK-3beta-dependent phosphorylation of beta-catenin, thereby inhibiting axis formation.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk