Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
J Immunol. 1998 Apr 15;160(8):3743-7.

Bcmd decreases the life span of B-2 but not B-1 cells in A/WySnJ mice.

Author information

  • 1Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia 19104, USA.


Peripheral B cells are divided into two subpopulations, B-1 and B-2, the relationship of which remains obscure. We recently showed that the Bcmd mutation in A/WySnJ mice reduces average B cell life span, yielding 90% fewer peripheral B cells. Despite this defect, A/WySnJ mice have an elevated proportion of peritoneal CD5+ B cells, suggesting that Bcmd may be the first B-cell-intrinsic gene to differentially affect the B-1 and B-2 subpopulations. To test this hypothesis in detail, we have used in vivo BrdU labeling and four-color cytofluorometry to examine the numbers and turnover rates of sIgM+CD23-CD43+ (B-1) and sIgM+CD23+CD43- (B-2) splenocytes in A/WySnJ and A/J mice. The results show the expected 90% reduction of splenic B-2 cells among A/WySnJ mice, but a normal splenic B-1 cell pool. Increased B-1 cell renewal cannot explain this undiminished pool, because BrdU labeling kinetics reveals an identical splenic B-1 subset turnover rate of approximately 4%/day in both A/WySnJ and A/J strains. Thus, B-1 cells are Bcmd-independent but B-2 cells are Bcmd-dependent, suggesting Bcmd functions in a positive signaling pathway that imparts longevity to quiescent B cells, but that is not required for cycling B cells. Moreover these results show that the requisites for maturation and longevity differ between the B-1 and B-2 subsets.

[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases


PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk