Format

Send to:

Choose Destination
See comment in PubMed Commons below
Brain Res. 1998 Mar 9;786(1-2):80-8.

Single and repeated episodes of ethanol withdrawal increase adenosine A1, but not A2A, receptor density in mouse brain.

Author information

  • 1Rhone-Poulenc Rorer Central Research, Collegeville, PA, USA.

Abstract

A history of multiple ethanol withdrawal experiences has been shown to exacerbate the severity of future withdrawal episodes, and this sensitization of the withdrawal response has been hypothesized to represent a 'kindling' phenomenon. Since adenosine functions as an inhibitory modulator of seizure activity and may interact with ethanol to influence neuronal excitability, the present study was conducted to examine the effects of single and repeated episodes of ethanol withdrawal on adenosine A1 and A2A receptors in adult C3H/He mice. Mice were chronically exposed to ethanol vapor in inhalation chambers and tested for withdrawal seizures following multiple withdrawal (MW) experience (four cycles of 16 h ethanol intoxication interrupted by 8 h periods of abstinence), single withdrawal experience following 16 h (SW) or 64 h (CE) continuous ethanol intoxication, or no ethanol exposure (controls). Separate groups of mice from each withdrawal condition were used to generate pooled cortical and striatal tissue for ligand saturation experiments using [3H]cyclohexyladenosine to label A1 receptors and [3H]CGS 21680 to label A2A receptors. Results indicated that withdrawal seizures were significantly more severe in mice with multiple withdrawal experience in comparison to animals that experienced only a single withdrawal episode, even when total amount of ethanol exposure was equated among groups. The density of A1 receptors in cerebral cortex was significantly increased over controls 8 h following final ethanol withdrawal by approximately 35% in SW and CE groups, with the largest increase observed in the MW group (56%). Withdrawal treatment groups did not differ in cortical A1 binding sites immediately upon withdrawal from ethanol, and no significant differences in binding of [3H]CGS 21680 to striatal A2A receptors were observed following ethanol withdrawal. Ethanol exposure and withdrawal did not significantly alter ligand affinity for either adenosine receptor. These results indicate that adenosine A1 receptors are selectively upregulated during ethanol withdrawal and that the degree of upregulation may be enhanced following multiple withdrawal episodes. Further, these observations suggest that the upregulation of brain A1 receptors during ethanol withdrawal may represent a compensatory inhibitory response to increased seizure severity associated with repeated episodes of ethanol withdrawal.

Copyright 1998 Elsevier Science B.V.

PMID:
9554962
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk