Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1998 Apr 24;273(17):10112-9.

The GABP-responsive element of the interleukin-2 enhancer is regulated by JNK/SAPK-activating pathways in T lymphocytes.

Author information

  • 1Institut für Medizinische Strahlenkunde und Zellforschung (MSZ), Universität Würzburg, Versbacher Strasse 5, D-97078 Würzburg, Germany.

Abstract

T cell activation leads via multiple intracellular signaling pathways to rapid induction of interleukin-2 (IL-2) expression, which can be mimicked by costimulation with 12-O-tetradecanoylphorbol-13-acetate (TPA) and ionomycin. We have identified a distal IL-2 enhancer regulated by the Raf-MEK-ERK signaling pathway, which can be induced by TPA/ionomycin treatment. It contains a dyad symmetry element (DSE) controlled by the Ets-like transcription factor GA-binding protein (GABP), a target of activated ERK. TPA/ionomycin treatment of T cells stimulates both mitogen-activated ERK, as well as the stress-activated mitogen-activated protein kinase family members JNK/SAPK and p38. In this study, we investigated the contribution of the stress-activated pathways to the induction of the distal IL-2 enhancer. We show that JNK- but not p38-activating pathways regulate the DSE activity. Furthermore, the JNK/SAPK signaling pathway cooperates with the Raf-MEK-ERK cascade in TPA/ionomycin-induced DSE activity. In T cells, overexpression of SPRK/MLK3, an activator of JNK/SAPK, strongly induces DSE-dependent transcription and dominant negative kinases of SEK and SAPK impair TPA/ionomycin-induced DSE activity. Blocking both ERK and JNK/SAPK pathways abolishes the DSE induction. The inducibility of the DSE is strongly dependent on the Ets-core motifs, which are bound by GABP. Both subunits of GABP are phosphorylated upon JNK activation in vivo and three different isoforms of JNK/SAPK, but not p38, in vitro. Our data suggest that GABP is targeted by signaling events from both ERK and JNK/SAPK pathways. GABP therefore is a candidate for signal integration and regulation of IL-2 transcription in T lymphocytes.

PMID:
9553058
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk