Format

Send to

Choose Destination
See comment in PubMed Commons below
J Mol Biol. 1998 Feb 27;276(3):547-57.

Mutations in the leader region of ribosomal RNA operons cause structurally defective 30 S ribosomes as revealed by in vivo structural probing.

Author information

  • 1Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Germany.

Abstract

The biogenesis of functional ribosomes is regulated in a very complex manner, involving different proteins and RNA molecules. RNAs are not only essential components of both ribosomal subunits but also transiently interacting factors during particle formation. In eukaryotes snoRNAs act as molecular chaperones to assist maturation, modification and assembly. In a very similar way highly conserved leader sequences of bacterial rRNA operons are involved in the correct formation of 30 S ribosomal subunits. Certain mutations in the rRNA leader region cause severe growth defects due to malfunction of ribosomes which are assembled from such transcription units. To understand how the leader sequences act to facilitate the formation of the correct 30 S subunits we performed in vivo chemical probing to assess structural differences between ribosomes assembled either from rRNA transcribed from wild-type operons or from operons which contain mutations in the rRNA leader region. Cells transformed with plasmids containing the respective rRNA operons were reacted with dimethylsulphate (DMS). Ribosomes were isolated by sucrose gradient centrifugation and modified nucleotides within the 16 S rRNA were identified by primer extension reaction. Structural differences between ribosomes from wild-type and mutant rRNA operons occur in several clusters within the 16 S rRNA secondary structure. The most prominent differences are located in the central domain including the universally conserved pseudoknot structure which connects the 5', the central and the 3' domain of 16 S rRNA. Two other clusters with structural differences fall in the 5' domain where the leader had been shown to interact with mature 16 S rRNA and within the ribosomal protein S4 binding site. The other differences in structure are located in sites which are also known as sites for the action of several antibiotics. The data explain the functional defects of ribosomes from rRNA operons with leader mutations and help to understand the altered biogenesis pathway from mutations in an rRNA leader region to the formation of functionally defective ribosomes.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk