Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biol Reprod. 1998 Apr;58(4):995-1002.

Apoptosis, bcl-2 expression, and proliferative activity in human endometrial stroma and endometrial granulated lymphocytes.

Author information

  • 1Department of Immunology, University of Newcastle, Newcastle-upon-Tyne, United Kingdom. 101552.3635@compuserve.com

Abstract

Human endometrial leukocytes undergo regular cyclical changes during the menstrual cycle, with a striking increase in the phenotypically unusual population of CD56+ CD16- endometrial granulated lymphocytes (eGLs) in the late secretory phase and early pregnancy. The factors that regulate this increase in eGL numbers are unclear; their unusual morphology, however, has led to the suggestion that they undergo apoptosis at the end of the menstrual cycle. Apoptosis, bcl-2 expression, and proliferative activity were examined in the stroma of normal cycling, progesterone-treated, and early-pregnancy endometrium. The expression of bcl-2 and the Ki67 proliferation marker by highly purified (> 98% CD56+) eGLs from endometrium during the menstrual cycle and from first-trimester decidua was also studied. Apoptotic cells were rarely observed in the endometrial stroma of any of the samples examined. Stromal bcl-2 expression, however, increased from the proliferative to the premenstrual phase, and double immunohistochemical labeling demonstrated large numbers of bcl-2+ CD56+ eGLs. In contrast, Ki67 expression was high in the endometrial stroma during the proliferative phase, fell during the secretory phase, and rose again premenstrually, because of expression by eGLs. Isolated CD56+ eGLs also showed high bcl-2 and Ki67 expression at the end of the menstrual cycle. Unlike premenstrual endometrium, progesterone-treated endometrium and first-trimester decidua contained few proliferating cells, expressed high levels of bcl-2, and showed no evidence of apoptosis. Thus, eGLs do not undergo apoptosis in premenstrual endometrium, and their regulatory mechanisms remain to be clarified.

PMID:
9546731
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk