Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
In Vitro Cell Dev Biol Anim. 1998 Feb;34(2):109-15.

Massive culture of human liver cancer cells in a newly developed radial flow bioreactor system: ultrafine structure of functionally enhanced hepatocarcinoma cell lines.

Author information

  • 1Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan.

Abstract

With a view to initiating clinical trials, cell morphology and function for a newly developed artificial liver support system employing highly functional human liver cell line, FLC-7, cultured in a radial flow bioreactor were compared to cells grown in a conventional monolayer culture. The radial flow bioreactor consists of a vertically extended cylindrical matrix comprised of porous glass bead microcarriers through which liquid medium flows from the periphery in toward the central axis generating a beneficial concentration gradient of oxygen and nutrients, while preventing excessive shear stresses or buildup of waste products. The three-dimensional culture system supports high-density (1.1 x 10(8) cells/ml-matrix), large scale cultures (4.4 x 10(10) cells/400 ml-bioreactor) with long-term viability. Scanning and transmission electron microscopy (SEM and TEM) revealed that cells cultured in a monolayer system were flattened and extended with numerous cytoplasmic projections. Cells in the three-dimensional culture were spherical and covered with microvillilike processes resembling liver cells in vivo. The cells were solidly attached on the surfaces and within the pores of the microcarriers in highly dense colonies. The spherical cells remained in close contact with adjacent cells, while circulation of liquid medium flowed freely through spaces between cells. FLC-7 cells produced albumin at a rate of 6.41 micrograms/24 h/10(6) cells. Alpha-fetoprotein (AFP) production dropped nearly threefold in comparison to monolayer cultures. Results demonstrated that the new artificial liver support systems (ALSS) provides a superior three-dimensional culture environment that allows cells to perform at naturally functioning levels.

PMID:
9542647
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Write to the Help Desk