Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Hepatology. 1998 Apr;27(4):1064-74.

Ethanol up-regulates fatty acid uptake and plasma membrane expression and export of mitochondrial aspartate aminotransferase in HepG2 cells.

Author information

  • 1Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA.

Abstract

To explain the increased plasma mitochondrial aspartate aminotransferase (mAspAT) observed in alcoholics, we cultured HepG2 hepatoma cells in ethanol. Acute (24 hour) exposure to 0, 20, 40, or 80 mmol/L ethanol produced a dose-dependent (r = .98) increase in mAspAT messenger RNA (mRNA) of < or = thirteen-fold, with no significant change in the cellular content of mAspAT or of several other enzymes. The recovery of mAspAT in the medium over 24 hours of ethanol exposure correlated with both ethanol concentration and with mAspAT mRNA (r = .90), reaching 808% of cellular enzyme content/24 hours at 80 mmol/L. Recovery of all other enzymes studied was < or = 20% of cellular content and unaffected by ethanol. Plasma membrane mAspAT content also correlated with mAspAT mRNA (r = .96) and mitochondrial levels were unchanged. No mitochondrial morphologic abnormalities were observed at any ethanol concentration studied. In cells cultured chronically at 0 to 80 mmol/L ethanol, fatty acid uptake Vmax increased in parallel with plasma membrane expression of mAspAT (r = .98). Cellular triglyceride content was highly correlated with Vmax. Thus, the data suggest that: 1) the increased plasma mAspAT observed in alcoholics may reflect pharmacologic upregulation of mAspAT mRNA and of mAspAT synthesis by ethanol; and 2) increased mAspAT-mediated fatty acid uptake may contribute to alcoholic fatty liver.

Comment in

PMID:
9537447
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for John Wiley & Sons, Inc.
    Loading ...
    Write to the Help Desk