Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Nature. 1998 Mar 12;392(6672):202-5.

The hyperthermophile chromosomal protein Sac7d sharply kinks DNA.

Author information

  • 1Department of Cell and Structural Biology, University of Illinois at Urbana-Champaign, Urbana 61801, USA.

Abstract

The proteins Sac7d and Sso7d belong to a class of small chromosomal proteins from the hyperthermophilic archaeon Sulfolobus acidocaldarius and S. solfactaricus, respectively. These proteins are extremely stable to heat, acid and chemical agents. Sac7d binds to DNA without any particular sequence preference and thereby increases its melting temperature by approximately 40 degrees C. We have now solved and refined the crystal structure of Sac7d in complex with two DNA sequences to high resolution. The structures are examples of a nonspecific DNA-binding protein bound to DNA, and reveal that Sac7d binds in the minor groove, causing a sharp kinking of the DNA helix that is more marked than that induced by any sequence-specific DNA-binding proteins. The kink results from the intercalation of specific hydrophobic side chains of Sac7d into the DNA structure, but without causing any significant distortion of the protein structure relative to the uncomplexed protein in solution.

PMID:
9515968
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk