Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Curr Biol. 1998 Mar 12;8(6):315-24.

A higher plant seven-transmembrane receptor that influences sensitivity to cytokinins.

Author information

  • 1Department of Agricultural Sciences, University of Bristol, Long Ashton, UK.

Erratum in

  • Curr Biol 2001 Apr 3;11(7):535.

Abstract

BACKGROUND:

All organisms perceive and respond to a profusion of environmental and endogenous signals that influence growth, development and behavior. The G-protein signalling pathway is a highly conserved mechanism for transducing extracellular signals, and the superfamily of receptors that have seven transmembrane (7TM) domains is a primary element of this pathway. Evidence that heterotrimeric G proteins are involved in signal transduction in plants is accumulating, prompting speculation that plant 7TM receptors might exist.

RESULTS:

Using information in the dbEST database of expressed sequence tags, we isolated an Arabidopsis thaliana gene (GCR1) that encodes a protein with seven predicted membrane-spanning domains and other features characteristic of 7TM receptors. The protein shows 18-23% amino-acid identity (46-53% similarity) to, and good colinear alignment with, 7TM receptors from three different families. Its highest sequence identity is with the Dictyostelium cAMP receptors. GCR1 is expressed at very low levels in the roots, stems and leaves of Arabidopsis; it is a single-copy gene which maps close to the restriction fragment length polymorphism marker m291 on chromosome 5. Transgenic Arabidopsis expressing antisense GCR1 under the control of the constitutive cauliflower mosaic virus 35S promoter have reduced sensitivity to cytokinins in roots and shoots, yet respond normally to all other plant hormones. This suggests a functional role for GCR1 in cytokinin signal transduction.

CONCLUSIONS:

GCR1 encodes the first 7TM receptor homologue identified in higher plants and is involved in cytokinin signal transduction. This discovery suggests that 7TM receptors are ancient and predate the divergence of plants and animals.

PMID:
9512416
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk