Display Settings:


Send to:

Choose Destination
Toxicol Pathol. 1998 Jan-Feb;26(1):73-91.

Renal papillary necrosis--40 years on.

Author information

  • 1BioMedical Research Centre, Division of Biomedical Sciences, Sheffield Hallam University, England, United Kingdom.


Analgesics and nonsteroidal anti-inflammatory drugs (NSAIDs) are well recognized as a major class of therapeutic agent that causes renal papillary necrosis (RPN). Over the last decade a broad spectrum of other therapeutic agents and many chemicals have also been reported that have the potential to cause this lesion in animals and man. There is consensus that RPN is the primary lesion that can progress to cortical degeneration; and it is only at this stage that the lesion is easily diagnosed. In the absence of sensitive and selective noninvasive biomarkers of RPN there is still no clear indication of which compound, under what circumstances, has the greatest potential to cause this lesion in man. Attempts to mimic RPN in rodents using analgesics and NSAIDs have not provided robust models of the lesion. Thus, much of the research has concentrated on those compounds that cause an acute or subacute RPN as the basis by which to study the pathogenesis of the lesion. Based on the mechanistic understanding gleaned from these model compounds it has been possible to transpose an understanding of the underlying processes to the analgesics and NSAIDs. The mechanism of RPN is still controversial. There are data that support microvascular changes and local ischemic injury as the underlying cause. Alternatively, several model papillotoxins, some analgesics, and NSAIDs target selectively for the medullary interstitial cells, which is the earliest reported aberration, after which there are a series of degenerative processes affecting other renal cell types. Many papillotoxins have the potential to undergo prostaglandin hydroperoxidase-mediated metabolic activation, specifically in the renal medullary interstitial cells. These reactive intermediates, in the presence of large quantities of polyunsaturated lipid droplets, result in localized and selective injury of the medullary interstitial cells. These highly differentiated cells do not repair, and it is generally accepted that continuing insult to these cells will result in their progressive erosion. The loss of these cells is thought to be central to the degenerative cascade that affects the cortex. There is still a need to understand better the primary mechanism and the secondary consequences of RPN so that the risk of chemical agents in use and novel molecules can be fully assessed.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk