Format

Send to:

Choose Destination
See comment in PubMed Commons below
Exp Neurol. 1998 Feb;149(2):310-21.

Transplantation of cryopreserved human embryonal carcinoma-derived neurons (NT2N cells) promotes functional recovery in ischemic rats.

Author information

  • 1Department of Surgery, University of South Florida College of Medicine, Tampa 33612, USA.

Abstract

This study was designed to explore the efficacy of a human clone cell line as an alternative neural graft source and to validate the practice of cryopreservation and xenografting as logistical approaches toward conducting neural transplantation. We investigated the biological effects of transplanting cultured human neurons (NT2N cells) derived from a well-characterized embryonal carcinoma cell line into the brains of rats subjected to transient, focal cerebral ischemia induced by embolic occlusion of the middle cerebral artery. At 1 month and extending throughout the 6-month posttransplantation test period, ischemic animals that were transplanted with NT2N cells and treated with an immunosuppressive drug displayed a significant improvement in a passive avoidance task as well as a normalization of asymmetrical motor behavior compared to ischemic animals that received rat fetal cerebellar cell grafts or vehicle alone. Remarkably, cryopreserved NT2N cell grafts compared with fresh NT2N cell grafts, remained viable in the immunosuppressed rat brain and effective in producing behavioral recovery in immunosuppressed ischemic animals. The long-term viability of cryopreserved NT2N cell xenografts in vivo and their sustained effectiveness in promoting behavioral recovery suggest potential utilization of xenografting and cryopreservation as useful protocols for establishing clone cell lines as graft source in neural transplantation therapies for central nervous system disorders.

PMID:
9500961
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk