Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1998 Mar 13;273(11):6367-72.

The CreA repressor is the sole DNA-binding protein responsible for carbon catabolite repression of the alcA gene in Aspergillus nidulans via its binding to a couple of specific sites.

Author information

  • 1Institut de Génétique et Microbiologie, Université Paris-Sud, URA CNRS D 2225, Centre Universitaire d'Orsay, Bâtiment 409, F-91405 Orsay Cedex, France.

Abstract

Carbon catabolite repression is mediated in Aspergillus nidulans by the negative acting protein CreA. The CreA repressor plays a major role in the control of the expression of the alc regulon, encoding proteins required for the ethanol utilization pathway. It represses directly, at the transcriptional level, the specific transacting gene alcR, the two structural genes alcA and aldA, and other alc genes in all physiological growth conditions. Among the seven putative CreA sites identified in the alcA promoter region, we have determined the CreA functional targets in AlcR constitutive and derepressed genetic backgrounds. Two different divergent CreA sites, of which one overlaps a functional AlcR inverted repeat site, are largely responsible for alcA repression. Totally derepressed alcA expression is achieved when these two CreA sites are disrupted in addition to another single site, which overlaps the functional palindromic induction target. The fact that derepression is always associated with alcA overexpression is consistent with a competition model between AlcR and CreA for their cognate targets in the same region of the alcA promoter. Our results also indicate that the CreA repressor is necessary and sufficient for the total repression of the alcA gene.

PMID:
9497366
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk