Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1998 Mar 13;273(11):6001-4.

Regulation of aquaporin-4 water channels by phorbol ester-dependent protein phosphorylation.

Author information

  • 1Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

Abstract

The molecular mechanisms for regulating water balance in many tissues are unknown. Like the kidney, the eye contains multiple water channel proteins (aquaporins) that transport water through membranes, including two (AQP1 and AQP4) in the ciliary body, the site of aqueous humor production. However, because humans with defective AQP1 are phenotypically normal and because the ocular application of phorbol esters reduce intraocular pressure, we postulated that the water channel activity of AQP4 may be regulated by these agents. We now report that protein kinase C activators, phorbol 12,13-dibutyrate, and phorbol 12-myristate 13-acetate strongly stimulate the phosphorylation of AQP4 and inhibit its activity in a dose-dependent manner. Phorbol 12,13-dibutyrate (10 microM) and phorbol 12-myristate 13-acetate (10 nM) reduced the rate of AQP4-expressing oocyte swelling by 87 and 92%, respectively. Further, phorbol 12,13-dibutyrate significantly increased the amount of phosphorylated AQP4. These results demonstrate that protein kinase C can regulate the activity of AQP4 through a mechanism involving protein phosphorylation. Moreover, they suggest important potential roles for AQP4 in several clinical disorders involving rapid water transport such as glaucoma, brain edema, and swelling of premature infant lungs.

PMID:
9497312
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk