Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Nature. 1998 Feb 12;391(6668):703-7.

Immunoreceptor DAP12 bearing a tyrosine-based activation motif is involved in activating NK cells.

Author information

  • 1DNAX Research Institute of Molecular and Cellular Biology, Department of Immunobiology, Palo Alto, California 94304, USA. lanier@dnax.org

Abstract

Natural killer (NK) cells express cell-surface receptors of the immunoglobulin and C-type lectin superfamilies that recognize major histocompatibility complex (MHC) class I peptides and inhibit NK-cell-mediated cytotoxicity. These inhibitory receptors possess ITIM sequences (for immunoreceptor tyrosine-based inhibitory motifs) in their cytoplasmic domains that recruit SH2-domain-containing protein tyrosine phosphatases, resulting in inactivation of NK cells. Certain isoforms of these NK-cell receptors lack ITIM sequences and it has been proposed that these 'non-inhibitory' receptors may activate, rather than inhibit, NK cells. Here we show that DAP12, a disulphide-bonded homodimer containing an immunoreceptor tyrosine-based activation motif (ITAM) in its cytoplasmic domain, non-covalently associates with membrane glycoproteins of the killer-cell inhibitory receptor (KIR) family without an ITIM in their cytoplasmic domain. Crosslinking of KIR-DAP12 complexes results in cellular activation, as demonstrated by tyrosine phosphorylation of cellular proteins and upregulation of early-activation antigens. Phosphorylated DAP12 peptides bind ZAP-70 and Syk protein tyrosine kinases, suggesting that the activation pathway is similar to that of the T- and B-cell antigen receptors.

Comment in

PMID:
9490415
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk