Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Microbiol. 1998 Feb;27(3):563-71.

The role of glyoxalase I in the detoxification of methylglyoxal and in the activation of the KefB K+ efflux system in Escherichia coli.

Author information

  • 1Department of Molecular and Cell Biology, Institute of Medical Sciences, University of Aberdeen, Foresterhill, UK.

Abstract

The glyoxalase I gene (gloA) of Escherichia coli has been cloned and used to create a null mutant. Cells overexpressing glyoxalase I exhibit enhanced tolerance of methylglyoxal (MG) and exhibit elevated rates of detoxification, although the increase is not stoichiometric with the change in enzyme activity. Potassium efflux via KefB is also enhanced in the overexpressing strain. Analysis of the physiology of the mutant has revealed that growth and viability are quite normal, unless the cell is challenged with MG either added exogenously or synthesized by the cells. The mutant strain has a low rate of detoxification of MG, and cells rapidly lose viability when exposed to this electrophile. Activation of KefB and KefC is diminished in the absence of functional glyoxalase I. These data suggest that the glutathione-dependent glyoxalase I is the dominant detoxification pathway for MG in E. coli and that the product of glyoxalase I activity, S-lactoylglutathione, is the activator of KefB and KefC.

PMID:
9489668
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Blackwell Publishing
    Loading ...
    Write to the Help Desk