Format

Send to:

Choose Destination
See comment in PubMed Commons below
Nature. 1998 Feb 19;391(6669):775-8.

DNA-templated assembly and electrode attachment of a conducting silver wire.

Author information

  • 1Department of Physics, Technion-Israel Institute of Technology, Haifa. erez@physics.technion.ac.il

Abstract

Recent research in the field of nanometre-scale electronics has focused on two fundamental issues: the operating principles of small-scale devices, and schemes that lead to their realization and eventual integration into useful circuits. Experimental studies on molecular to submicrometre quantum dots and on the electrical transport in carbon nanotubes have confirmed theoretical predictions of an increasing role for charging effects as the device size diminishes. Nevertheless, the construction of nanometre-scale circuits from such devices remains problematic, largely owing to the difficulties of achieving inter-element wiring and electrical interfacing to macroscopic electrodes. The use of molecular recognition processes and the self-assembly of molecules into supramolecular structures might help overcome these difficulties. In this context, DNA has the appropriate molecular-recognition and mechanical properties, but poor electrical characteristics prevent its direct use in electrical circuits. Here we describe a two-step procedure that may allow the application of DNA to the construction of functional circuits. In our scheme, hybridization of the DNA molecule with surface-bound oligonucleotides is first used to stretch it between two gold electrodes; the DNA molecule is then used as a template for the vectorial growth of a 12 microm long, 100 nm wide conductive silver wire. The experiment confirms that the recognition capabilities of DNA can be exploited for the targeted attachment of functional wires.

PMID:
9486645
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk