Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Neurosci. 1998 Mar 15;18(6):2129-46.

Cell- and lamina-specific expression and activity-dependent regulation of type II calcium/calmodulin-dependent protein kinase isoforms in monkey visual cortex.

Author information

  • 1Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, California 92697-1280, USA.

Abstract

In situ hybridization histochemistry and immunocytochemistry were used to study localization and activity-dependent regulation of alpha, beta, gamma, and delta isoforms of type II calcium/calmodulin-dependent protein kinase (CaMKII) and their mRNAs in areas 17 and 18 of normal and monocularly deprived adult macaques. CaMKII-alpha is expressed overall at levels three to four times higher than that of CaMKII-beta and at least 15 times higher than that of CaMKII-gamma and -delta. All isoforms are expressed primarily in pyramidal cells of both areas, especially those of layers II-III, IVA (in area 17), and VI, but are also expressed in nonpyramidal, non-GABAergic cells of layer IV of both areas and in interstitial neurons of the white matter. CaMKII-alpha and -beta are colocalized, suggesting the formation of heteromers. There was no evidence of expression in neuroglial cells. Each isoform has a unique pattern of laminar and sublaminar distribution, but cortical layers or sublayers enriched for one isoform do not correlate with layers receiving inputs only from isoform-specific layers of the lateral geniculate nucleus. CaMKII-alpha and -beta mRNA and protein levels in layer IVC of area 17 are subject to activity-dependent regulation, with brief periods of monocular deprivation caused by intraocular injections of tetrodotoxin leading to a 30% increase in CaMKII-alpha mRNA and a comparable decrease in CaMKII-beta mRNA in deprived ocular dominance columns, especially of layer IVCbeta. Expression in other layers and expression of CaMKII-gamma and delta were unaffected. Changes occurring in layer IVC may influence the formation of heteromers and protect supragranular layers from CaMKII-dependent plasticity in the adult.

PMID:
9482799
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk