Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Invest Ophthalmol Vis Sci. 1998 Feb;39(2):253-62.

Anterior-posterior strain variation in normally hydrated and swollen rabbit cornea.

Author information

  • 1Department of Bioengineering, University of California San Diego, La Jolla, USA.

Abstract

PURPOSE:

To investigate the variation in anterior and posterior straining under intraocular pressure changes for the central cornea of normally hydrated and swollen rabbit eyes.

METHODS:

A new method of measuring regional corneal strains, by imaging a specific tissue location at various intraocular pressures, was developed. Sixteen freshly enucleated, New Zealand White rabbit eyes were investigated either in their normal hydration state or after swelling of the deepithelialized cornea. The eyes were mounted on a specially designed eye fixture, and laser-scanning confocal microscopic images of a selected region in the anterior stroma or endothelium were taken at intraocular pressures of 5, 12.5, 20, 35, and 65 mm Hg. The positions of individual keratocytes or endothelial cells were used to calculate the nonhomogeneous two-dimensional strain field over the image. Corneal thickness was measured at the lowest and highest intraocular pressures (5 mm Hg and 65 mm Hg).

RESULTS:

All pressure strain curves were highly nonlinear for intraocular pressures between 5 mm Hg and 65 mm Hg; the maximal posterior strains (normally hydrated, 2.1 +/- 0.1%; swollen, 4.8 +/- 0.8%) were larger than the maximal anterior strains (normally hydrated, 1.8 +/- 0.1%; swollen, 1.5 +/- 0.2%). Swelling significantly decreased the anterior strain response but increased the posterior one. The corneal thickness decreased 7.4 +/- 0.4% for the normally hydrated and 6.3 +/- 0.5% for the swollen corneas for an intraocular pressure step from 5 mm Hg to 65 mm Hg.

CONCLUSIONS:

Bending was found to play a significant role in central corneal deformation of swollen eyes but not in the normal hydration state. Microscopic strain measurements of the cornea, using a laser-scanning confocal microscope, are a valuable tool for the assessment of regional nonhomogeneous strains in various depths and locations of the cornea.

PMID:
9477981
[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk