Display Settings:

Format

Send to:

Choose Destination
Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1894-8.

Displacement of insulin-like growth factors from their binding proteins as a potential treatment for stroke.

Author information

  • 1Neurocrine Biosciences, Inc., San Diego, CA 92121, USA.

Abstract

Insulin-like growth factors I and II (IGF-I and IGF-II) play an important role in normal growth and brain development and protect brain cells from several forms of injury. The effects of IGFs are mediated by type-I and type-II receptors and modulated by potentially six specific binding proteins that form high-affinity complexes with IGFs in blood and cerebrospinal fluid (CSF) and under most circumstances inactivate them. Because brain injury is commonly associated with increases in IGFs and their associated binding proteins, we hypothesized that displacement of this large "pool" of endogenous IGF from the binding proteins would elevate "free" IGF levels to elicit neuroprotective effects comparable to those produced by administration of exogenous IGF. A human IGF-I analog [(Leu24, 59, 60, Ala31)hIGF-I] with high affinity to IGF-binding proteins (Ki = 0.3-3.9 nM) and no biological activity at the IGF receptors (Ki = >10,000 nM) increased the levels of "free, bioavailable" IGF-I in the CSF. Intracerebroventricular administration of this analog up to 1h after an ischemic insult to the rat brain had a potent neuroprotective action comparable to IGF-I. This novel strategy for increasing "free" IGF levels in the brain may be useful for the treatment of stroke and other neurodegenerative diseases.

PMID:
9465113
[PubMed - indexed for MEDLINE]
PMCID:
PMC19209
Free PMC Article

Images from this publication.See all images (4)Free text

Figure 1
Figure 2
Figure 3
Figure 4
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk