Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Infect Immun. 1998 Feb;66(2):682-91.

Environmental regulation of Salmonella typhi invasion-defective mutants.

Author information

  • 1Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799, USA.


Salmonella typhi is the etiologic agent of human typhoid. During infection, S. typhi adheres to and invades epithelial and M cells that line the distal ileum. To survive in the human host, S. typhi must overcome numerous complex extracellular and intracellular environments. Since relatively little is known about S. typhi pathogenesis, studies were initiated to identify S. typhi genes involved in the early steps of interaction with the host and to evaluate the environmental regulation of these genes. In the present study, TnphoA mutagenesis was used to study these early steps. We isolated 16 Salmonella typhi TnphoA mutants that were defective for both adherence and invasion of the human small intestinal epithelial cell line Int407. Twelve of sixteen mutations were identified in genes homologous to the S. typhimurium invG and prgH genes, which are known to be involved in the type III secretion pathway of virulence proteins. Two additional insertions were identified in genes sharing homology with the cpxA and damX genes from Escherichia coli K-12, and two uncharacterized invasion-deficient mutants were nonmotile. Gene expression of TnphoA fusions was examined in response to environmental stimuli. We found that the cpxA, invG, and prgH genes were induced when grown under conditions of high osmolarity (0.3 M NaCl). Expression of invG and prgH genes was optimal at pH 6.5 and strongly reduced at low pH (5.0). Transcription of both invG and prgH TnphoA gene fusions was initiated during the late logarithmic growth phase and was induced under anaerobic conditions. Finally, we show that both invG and prgH genes appear to be regulated by DNA supercoiling, a mechanism influenced by environmental factors. These results are the first to demonstrate that in S. typhi, (i) the prgH and cpxA genes are osmoregulated, (ii) the invG gene is induced under low oxygen conditions, (iii) the invG gene is pH regulated and growth phase dependent, and (iv) the prgH gene appears to be regulated by DNA supercoiling. Since our experimental conditions were designed to mimic the in vivo environmental milieu, our results suggest that specific environmental conditions act as signals to induce the expression of S. typhi invasion genes.

[PubMed - indexed for MEDLINE]
Free PMC Article

Images from this publication.See all images (1)Free text

FIG. 1
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk