Send to:

Choose Destination
See comment in PubMed Commons below
J Hepatol. 1997 Dec;27(6):1067-80.

Effect of tumour necrosis factor-alpha on proliferation, activation and protein synthesis of rat hepatic stellate cells.

Author information

  • 1Department of Internal Medicine, University of Göttingen, Germany.



Hepatic stellate cells represent the principal matrix-synthesising cells of damaged liver and are targets of a number of cytokines currently under investigation. The study analyses the effects of tumour necrosis factor-alpha and interferon-gamma on proliferation, "activation" and protein synthesis of hepatic stellate cells.


Primary cultures of hepatic stellate cells were exposed to tumour necrosis factor-alpha and interferon-gamma. Cell proliferation was studied by 3H-thymidine and bromo-deoxy-uridine incorporation. Protein synthesis was analysed using immunoprecipitation, Western- and Northern blotting techniques.


Proliferation of hepatic stellate cells was reduced by tumor necrosis factor-alpha and interferon-gamma, while "activation" of hepatic stellate cells as assessed by expression of smooth muscle alpha-actin and of TGF-beta/activin type I receptor was induced by tumour necrosis factor-alpha but downregulated by interferon-gamma. Tumour necrosis factor-alpha increased the synthesis of distinct extracellular matrix proteins, particularly of fibronectin and tenascin, but decreased collagen type III expression. In contrast, interferon-gamma reduced the synthesis of all connective tissue proteins tested. Among the protease inhibitors, interferon-gamma induced C1-esterase inhibitor synthesis, while tumour necrosis factor-alpha stimulated plasminogen activator inhibitor type 1 production.


Tumour necrosis factor-alpha and interferon-gamma decrease proliferation of hepatic stellate cells, while "activation" of hepatic stellate cells and synthesis of proteins involved in matrix metabolism are regulated in a differential, cytokine-specific manner, suggesting that both cytokines play an important role in liver repair.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk