Display Settings:

Format

Send to:

Choose Destination
J Biol Chem. 1998 Feb 6;273(6):3140-3.

Bcl-XL cooperatively associates with the Bap31 complex in the endoplasmic reticulum, dependent on procaspase-8 and Ced-4 adaptor.

Author information

  • 1Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada.

Abstract

Bap31 is a polytopic integral membrane protein of the endoplasmic reticulum and forms a complex with Bcl-2/Bcl-XL and procaspase-8 (Ng, F. W. H., Nguyen, M., Kwan, T., Branton, P. E., Nicholson, W. D., Cromlish, J. A., and Shore, G. C. (1997) J. Cell Biol. 139, 327-338). In co-transfected human cells, procaspase-8 is capable of interacting with Ced-4, an important adaptor molecule in Caenorhabditis elegans that binds to and activates the C. elegans procaspase, proCed-3. Here, we show that the predicted death effector homology domain within the cytosolic region of Bap31 interacts with Ced-4 and contributes to recruitment of procaspase-8. Bcl-XL, which binds directly but weakly to the polytopic transmembrane region of Bap31, indirectly and cooperatively associates with the Bap31 cytosolic domain, dependent on the presence of procaspase-8 and Ced-4. Ced-4Deltac does not interact with Bcl-XL but rather displaces it from Bap31, suggesting that an endogenous Ced-4-like adaptor is a normal constituent of the Bap31 complex and is required for stable association of Bcl-XL with Bap31 in vivo. These findings indicate that Bap31 is capable of recruiting essential components of a core death regulatory machinery.

PMID:
9452422
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk