Send to

Choose Destination
See comment in PubMed Commons below
J Comp Physiol A. 1997 Dec;181(6):635-50.

Frequency resolution and spectral integration (critical band analysis) in single units of the cat primary auditory cortex.

Author information

  • 1Abteilung Vergleichende Neurobiologie, Universit├Ąt Ulm, Germany.


Frequency resolution and spectral filtering in the cat primary auditory cortex (AI) were mapped by extracellular recordings of tone responses in white noise of various bandwidths. Single-tone excitatory tuning curves, critical bandwidths, and critical ratios were determined as a function of neuronal characteristic frequency and tone level. Single-tone excitatory tuning curves are inadequate measures of frequency resolution and spectral filtering in the AI, because their shapes (in most neurons) deviated substantially from the shapes of "tuning curves for complex sound analysis", the curves determined by the band limits of the critical bandwidths. Perceptual characteristics of spectral filtering (intensity independence and frequency dependence) were found in average critical bandwidths of neurons from the central and ventral AI. The highest frequency resolution (smallest critical bandwidths) reached by neurons in the central and ventral AI equaled the psychophysical frequency resolution. The dorsal AI is special, since most neurons there had response properties incompatible with psychophysical features of frequency resolution. Perceptual characteristics of critical ratios were not found in the average neuronal responses in any area of the AI. It seems that spectral integration in the way proposed to be the basis for the perception of tones in noise is not present at the level of the AI.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk