Format

Send to

Choose Destination
See comment in PubMed Commons below
Fold Des. 1997;2(6):369-75.

Chiral N-substituted glycines can form stable helical conformations.

Author information

  • 1Chiron Corporation, Emeryville, CA 94608, USA.

Abstract

BACKGROUND:

Short sequence-specific heteropolymers of N-substituted glycines (peptoids) have emerged as promising tools for drug discovery. Recent work on medium-length peptoids containing chiral centers in their sidechains has demonstrated the existence of stable chiral conformations in solution. In this report, we explore the conformational properties of these N alpha chiral peptoids by molecular mechanics calculations and we propose a model for the solution conformation of an octamer of (S)-N-(1-phenylethyl)glycine.

RESULTS:

Molecular mechanics calculations indicate that the presence of N-substituents in which the N alpha carbons are chiral centers has a dramatic impact on the available backbone conformations. These results are supported by semi-empirical quantum mechanical calculations and coincide qualitatively with simple steric considerations. They suggest that an octamer of (S)-N-(1-phenylethyl)glycine should form a right-handed helix with cis amide bonds, similar to the polyproline type I helix. This model is consistent with circular dichorism studies of these molecules.

CONCLUSIONS:

Peptoid oligomers containing chiral centers in their sidechains present a new structural paradigm that has promising implications for the design of stably folded molecules. We expect that their novel structure may provide a scaffold to create heteropolymers with useful functionality.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk