Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Proc Natl Acad Sci U S A. 1998 Jan 6;95(1):394-9.

Deleterious mutation accumulation and the regeneration of genetic resources.

Author information

  • 1Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montreal, PQ, Canada, H3A 1B1. Dan_Schoen@maclan.mcgill.ca

Abstract

The accumulation of mildly deleterious mutations accompanying recurrent regeneration of plant germ plasm was modeled under regeneration conditions characterized by different amounts of selection and genetic drift. Under some regeneration conditions (sample sizes >/=75 individuals and bulk harvesting of seed) mutation accumulation was negligible, but under others (sample sizes <75 individuals or equalization of seed production by individual plants) mutation numbers per genome increased significantly during 25-50 cycles of regeneration. When mutations also are assumed to occur (at elevated rates) during seed storage, significant mutation accumulation and fitness decline occurred in 10 or fewer cycles of regeneration regardless of the regeneration conditions. Calculations also were performed to determine the numbers of deleterious mutations introduced and remaining in the genome of an existing variety after hybridization with a genetic resource and subsequent backcrossing. The results suggest that mutation accumulation has the potential to reduce the viability of materials held in germ plasm collections and to offset gains expected by the introduction of particular genes of interest from genetic resources.

PMID:
9419386
[PubMed - indexed for MEDLINE]
PMCID:
PMC18235
Free PMC Article

Images from this publication.See all images (3)Free text

Figure 1
Figure 2
Figure 3
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk