Send to:

Choose Destination
See comment in PubMed Commons below
RNA. 1997 Nov;3(11):1313-26.

The human U5 snRNP-specific 100-kD protein is an RS domain-containing, putative RNA helicase with significant homology to the yeast splicing factor Prp28p.

Author information

  • 1Institut für Molekularbiologie und Tumorforschung, Philipps-Universität Marburg, Germany.


Through UV-crosslinking experiments, we previously provided evidence suggesting that a U5 snRNP protein with a molecular weight in the 100-kDa range is an ATP-binding protein (Laggerbauer B, Lauber J, Lührmann R, 1996, Nucleic Acid Res 24:868-875). Separation of HeLa U5 snRNP proteins on 2D gels revealed multiple variants with apparent molecular masses of 100 kDa. Subsequent microsequencing of these variants led to the isolation of a cDNA encoding a protein with an N-terminal RS domain and a C-terminal domain that contains all of the conserved motifs characteristic of members of the DEAD-box family of RNA-stimulated ATPases and RNA helicases. Antibodies raised against cDNA-encoded 100-kDa protein specifically recognized native U5-100kD both on immunoblots and in purified HeLa U5 snRNPs or [U4/U6.U5] tri-snRNP complexes, confirming that the bona fide 100-kDa cDNA had been isolated. In vitro phosphorylation studies demonstrated that U5-100kD can serve as a substrate for both Clk/Sty and the U1 snRNP-associated kinase, and further suggested that the multiple U5-100kD variants observed on 2D gels represent differentially phosphorylated forms of the protein. A database homology search revealed a significant degree of homology (60% similarity, 37% identity) between the Saccharomyces cerevisiae splicing factor, Prp28p, which lacks an N-terminal RS domain, and the C-terminal domain of U5-100kD. Consistent with their designation as structural homologues, anti-Prp28 antibodies recognized specifically the human U5-100kD protein on immunoblots. Together with the DEXH-box U5-200kD protein (Lauber J et al., 1996, EMBO J 15:4001-4015), U5-100kD is the second example of a putative RNA helicase that is tightly associated with the U5 snRNP. Given the recent identification of the U5-116kD protein as a homologue of the ribosomal translocase EF-2 (Fabrizio P, Laggerbauer B, Lauber J, Lane WS, Lührmann R, 1997, EMBO J 16:4092-4106), at least three integral U5 snRNP proteins thus potentially facilitate conformational changes in the spliceosome during nuclear pre-mRNA splicing.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk