Send to:

Choose Destination
See comment in PubMed Commons below
Appl Environ Microbiol. 1997 Dec;63(12):4784-92.

Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH.

Author information

  • 1American Type Culture Collection, Rockville, Maryland 20852, USA.


A gel-stabilized gradient method that employed opposing gradients of Fe2+ and O2 was used to isolate and characterize two new Fe-oxidizing bacteria from a neutral pH, Fe(2+)-containing groundwater in Michigan. Two separate enrichment cultures were obtained, and in each the cells grew in a distinct, rust-colored band in the gel at the oxic-anoxic interface. The cells were tightly associated with the ferric hydroxides. Repeated serial dilutions of both enrichments resulted in the isolation of two axenic strains, ES-1 and ES-2. The cultures were judged pure based on (i) growth from single colonies in tubes at dilutions of 10(-7) (ES-2) (ES-2) and 10(-8) (ES-1); (ii) uniform cell morphologies, i.e., ES-1 was a motile long thin, bent, or S-shaped rod and ES-2 was a shorter curved rod; and (iii) no growth on a heterotrophic medium. Strain ES-1 grew to a density of 10(8) cells/ml on FeS with a doubling time of 8 h. Strain ES-2 grew to a density of 5 x 10(7) cells/ml with a doubling time of 12.5 h. Both strains also grew on FeCO3. Neither strain grew without Fe2+, nor did they grow with glucose, pyruvate, acetate, Mn, or H2S as an electron donor. Studies with an oxygen microelectrode revealed that both strains grew at the oxic-anoxic interface of the gradients and tracked the O2 minima when subjected to higher O2 concentrations, suggesting they are microaerobes. Phylogenetically the two strains formed a novel lineage within the gamma Proteobacteria. They were very closely related to each other and were equally closely related to PVB OTU 1, a phylotype obtained from an iron-rich hydrothermal vent system at the Loihi Seamount in the Pacific Ocean, and SPB OTU 1, a phylotype obtained from permafrost soil in Siberia. Their closest cultivated relative was Stenotrophomonas maltophilia. In total, this evidence suggests ES-1 and ES-2 are members of a previously untapped group of putatively lithotrophic, unicellular iron-oxidizing bacteria.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk