Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Natl Cancer Inst. 1997 Dec 3;89(23):1763-73.

Biology of cachexia.

Abstract

About half of all cancer patients show a syndrome of cachexia, characterized by loss of adipose tissue and skeletal muscle mass. Such patients have a decreased survival time, compared with the survival time among patients without weight loss, and loss of total body protein leads to substantial impairment of respiratory muscle function. These changes cannot be fully explained by the accompanying anorexia, and nutritional supplementation alone is unable to reverse the wasting process. Despite a falling caloric intake, patients with cachexia frequently show an elevated resting energy expenditure as a result of increases in Cori cycle (i.e., catalytic conversion of lactic acid to glucose) activity, glucose and triglyceride-fatty acid cycling, and gluconeogenesis. A number of cytokines, including tumor necrosis factor-apha, interleukins 1 and 6, interferon gamma, and leukemia-inhibitory factor, have been proposed as mediators of the cachectic process. However, the results of a number of clinical and laboratory studies suggest that the action of the cytokines alone is unable to explain the complex mechanism of wasting in cancer cachexia. In addition, cachexia has been observed in some xenograft models even without a cytokine involvement, suggesting that other factors may be involved. These probably include catabolic factors, which act directly on skeletal muscle and adipose tissue and the presence of which has been associated with the clinical development of cachexia. A polyunsaturated fatty acid, eicosapentaenoic acid, attenuates the action of such catabolic factors and has been shown to stabilize the process of wasting and resting energy expenditure in patients with pancreatic cancer. Such a pharmacologic approach may provide new insights into the treatment of cachexia.

Comment in

  • Re: Biology of cachexia. [J Natl Cancer Inst. 1998]
  • Continuing: Biology of cachexia. [J Natl Cancer Inst. 1999]
PMID:
9392617
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk