Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Cell. 1997 Nov 14;91(4):543-53.

Cone-rod dystrophy due to mutations in a novel photoreceptor-specific homeobox gene (CRX) essential for maintenance of the photoreceptor.

Author information

  • 1Department of Genetics, The Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada.

Abstract

Genes associated with inherited retinal degeneration have been found to encode proteins required for phototransduction, metabolism, or structural support of photoreceptors. Here we show that mutations in a novel photoreceptor-specific homeodomain transcription factor gene (CRX) cause an autosomal dominant form of cone-rod dystrophy (adCRD) at the CORD2 locus on chromosome 19q13. In affected members of a CORD2-linked family, the highly conserved glutamic acid at the first position of the recognition helix is replaced by alanine (E80A). In another CRD family, a 1 bp deletion (E168 [delta1 bp]) within a novel sequence, the WSP motif, predicts truncation of the C-terminal 132 residues of CRX. Mutations in the CRX gene cause adCRD either by haploinsufficiency or by a dominant negative effect and demonstrate that CRX is essential for the maintenance of mammalian photoreceptors.

PMID:
9390563
[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases

Miscellaneous

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk