Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1997 Dec 5;272(49):31163-71.

Mitogenic signaling of insulin-like growth factor I in MCF-7 human breast cancer cells requires phosphatidylinositol 3-kinase and is independent of mitogen-activated protein kinase.

Author information

  • 1Utrecht Graduate School of Developmental Biology, The Netherlands.


Addition of insulin-like growth factor I (IGF-I) to quiescent breast tumor-derived MCF-7 cells causes stimulation of cyclin D1 synthesis, hyperphosphorylation of the retinoblastoma protein pRb, DNA synthesis, and cell division. All of these effects are independent of the mitogen-activated protein kinase (MAPK) pathway since none of them is blocked by PD098059, the specific inhibitor of the MAPK activating kinase MEK1. This observation is consistent with the finding that the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), a strong inducer of MAPK activity in MCF-7 cells, effectively inhibits proliferation. The anti-proliferative effect of TPA in these cells may be accounted for, at least in part, by the MAPK-dependent stimulation of the synthesis of p21(WAF1/CIP1), an inhibitor of cyclin/cyclin-dependent kinase complexes. In contrast, all of the observed stimulatory effects of IGF-I on cell cycle progression, cyclin D1 synthesis, and pRb hyperphosphorylation were blocked by the specific phosphatidylinositol 3-kinase inhibitor LY294002, suggesting that phosphatidylinositol 3-kinase activity but not MAPK activity is required for transduction of the mitogenic IGF-I signal in MCF-7 cells.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk