Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Genetics. 1997 Nov;147(3):1401-9.

UV- and gamma-radiation sensitive mutants of Arabidopsis thaliana.

Author information

  • 1Section of Plant Biology, University of California, Davis 95616, USA.

Abstract

Arabidopsis seedlings repair UV-induced DNA damage via light-dependent and independent pathways. The mechanism of the "dark repair" pathway is still unknown. To determine the number of genes required for dark repair and to investigate the substrate-specificity of this process we isolated mutants with enhanced sensitivity to UV radiation in the absence of photoreactivating light. Seven independently derived UV sensitive mutants were isolated from an EMS-mutagenized population. These fell into six complementation groups, two of which (UVR1 and UVH1) have previously been defined. Four of these mutants are defective in the dark repair of UV-induced pyrimidine [6-4]pyrimidinone dimers. These four mutant lines are sensitive to the growth-inhibitory effects of gamma radiation, suggesting that this repair pathway is also involved in the repair of some type of gamma-induced DNA damage product. The requirement for the coordinate action of several different gene products for effective repair of pyrimidine dimers, as well as the nonspecific nature of the repair activity, is consistent with nucleotide excision repair mechanisms previously described in Saccharomyces cerevisiae and nonplant higher eukaryotes and inconsistent with substrate-specific base excision repair mechanisms found in some bacteria, bacteriophage, and fungi.

PMID:
9383080
[PubMed - indexed for MEDLINE]
PMCID:
PMC1208261
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk