Send to

Choose Destination
See comment in PubMed Commons below
Neuropharmacology. 1997 Sep;36(9):1269-75.

Mechanically and ATP-induced currents of mouse outer hair cells are independent and differentially blocked by d-tubocurarine.

Author information

  • 1Department of Physiology, University of Tübingen, Germany.


Mechano-electrical transducer channels (MET) and ATP-gated ion channels (P2X receptors) of hair cells have several properties in common: they share the same location at the apex of the cell, both channels are non-selective for cations and blocked by aminoglycosides and pyrazinecarboxamides (amiloride-related compounds). In this study, we test the relationship and possible identity of these two channel types. Using whole-cell patch-clamp recordings of outer hair cells (OHCs) of the cultured neonatal mouse cochlea and a fluid jet to stimulate their hair bundles mechanically, we show that d-tubocurarine, a blocker of P2X2 receptors, blocks MET channels with a half-blocking concentration of 2.3 microM. In contrast, the KD for the P2X2 receptors was 90 microM and 84 microM measured in hair cells and Xenopus oocytes, respectively. When hair bundles of OHCs were simultaneously stimulated with saturating mechanical stimuli and superfused by 100-300 microM ATP, transducer currents and ATP-activated currents were elicited simultaneously. Their amplitudes were additive, however. We conclude that MET- and ATP-activated currents are mediated by two distinct channel populations in hair cells.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk