Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Biochem J. 1997 Oct 15;327 ( Pt 2):321-33.

Mechanism and regulation of Mg-chelatase.

Author information

  • 1Department of Biological Sciences, Clemson University, Clemson, SC 29634-1903, USA.


Mg-chelatase catalyses the insertion of Mg into protoporphyrin IX (Proto). This seemingly simple reaction also is potentially one of the most interesting and crucial steps in the (bacterio)chlorophyll (Bchl/Chl)-synthesis pathway, owing to its position at the branch-point between haem and Bchl/Chl synthesis. Up until the level of Proto, haem and Bchl/Chl synthesis share a common pathway. However, at the point of metal-ion insertion there are two choices: Mg2+ insertion to make Bchl/Chl (catalysed by Mg-chelatase) or Fe2+ insertion to make haem (catalysed by ferrochelatase). Thus the relative activities of Mg-chelatase and ferrochelatase must be regulated with respect to the organism's requirements for these end products. How is this regulation achieved? For Mg-chelatase, the recent design of an in vitro assay combined with the identification of Bchl-biosynthetic enzyme genes has now made it possible to address this question. In all photosynthetic organisms studied to date, Mg-chelatase is a three-component enzyme, and in several species these proteins have been cloned and expressed in an active form. The reaction takes place in two steps, with an ATP-dependent activation followed by an ATP-dependent chelation step. The activation step may be the key to regulation, although variations in subunit levels during diurnal growth may also play a role in determining the flux through the Bchl/Chl and haem branches of the pathway.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Portland Press Icon for PubMed Central
    Loading ...
    Write to the Help Desk