Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Neurophysiol. 1997 Nov;78(5):2280-6.

GABAA receptor-mediated Cl- currents in rat thalamic reticular and relay neurons.

Author information

  • 1Department of Neurology and Neurological Sciences, Stanford University Medical Center, Stanford, California 94305, USA.

Abstract

GABAA receptor-mediated Cl- currents in rat thalamic reticular and relay neurons. J. Neurophysiol. 78: 2280-2286, 1997. Spontaneous and evoked inhibitory postsynaptic currents (sIPSCs and eIPSCs) and responses to exogenously applied gamma-aminobutyric acid (GABA), mediated by GABA type A (GABAA) receptors, were recorded in inhibitory neurons of nucleus reticularis thalami (nRt) and their target relay cells in ventrobasal (VB) nuclei by using patch clamp techniques in rat thalamic slices. The decay of sIPSCs in both nRt and VB neurons was best fitted with two exponential components. The decay time constants of sIPSCs in nRt neurons were much slower (tau1 = 38 ms; tau2 = 186 ms) than those previously reported in a variety of preparations and two to three times slower than those in VB neurons (tau1 = 17 ms; tau2 = 39 ms). GABAA receptor-mediated Cl- currents directly evoked by local GABA application also had a much slower decay time constant in nRt (225 ms) than in VB neurons (115 ms). Slow decay of GABA responses enhances the efficacy of recurrent intranuclear inhibition in nRt. The results suggest a functional diversity of GABAA receptors that may relate to the known heterogeneity of GABAA receptor subunits in these two thalamic nuclei.

PMID:
9356381
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk