Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biochemistry. 1997 Nov 4;36(44):13449-54.

Actin-tropomyosin activation of myosin subfragment 1 ATPase and thin filament cooperativity. The role of tropomyosin flexibility and end-to-end interactions.

Author information

  • 1Muscle Research Laboratories, Boston Biomedical Research Institute, Massachusetts 02114. Lehrer@bbri.harvard.edu

Abstract

Tropomyosin (Tm) bound to actin induces cooperative activation of actomyosin subfragment 1 (actin-S1) ATPase, observed as a sigmoid ATPase vs [S1] dependence. The activation is much steeper for gizzard muscle Tm (GTm) than for rabbit skeletal Tm (RSTm). To investigate if this greater cooperativity is due to increased communication between GTms along the thin filament, we studied effects of S1 binding on the state of actin-Tm using the fluorescence of pyrene-labeled Tm. Kinetic and equilibrium studies provided values for n, the apparent cooperative unit size [Geeves, M. A., and Lehrer, S. S. (1994) Biophys. J. 67, 273]. We report comparative studies of Tm-actin-S1 ATPase with values of n using GTm, RSTm, and 5aTm, a 1/7 shorter nonmuscle Tm from rat fibroblast cells [Pittenger, M. F., et al. (1994) Curr. Opin. Cell Biol., 6, 96]. 5aTm and GTm produce similar cooperative activation of actin-S1 ATPase and have similar n values that are 2-fold greater than RSTm, indicating a correlation between ATPase activation and n value. This appears to be due to the similarity of the C-terminal amino acid sequences of 5a and GTm which produce strong end-to-end interactions. The results are discussed in terms of a continuous flexible Tm strand on the actin filament.

PMID:
9354612
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk