Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Pharmacol Exp Ther. 1997 Nov;283(2):939-46.

Differential regulation of D2 and D4 dopamine receptor mRNAs in the primate cerebral cortex vs. neostriatum: effects of chronic treatment with typical and atypical antipsychotic drugs.

Author information

  • 1Section of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, USA.

Abstract

The RNase Protection Assay was used to examine the regulation of D2 and D4 dopamine receptor mRNAs in the cerebral cortex and neostriatum of nonhuman primates after chronic treatment with a wide spectrum of antipsychotic medications (chlorpromazine, clozapine, haloperidol, molindone, olanzapine, pimozide, remoxipride and risperidone). Tiapride, a D2 antagonist that lacks antipsychotic activity, was also included. All drugs were administered orally for 6 months at doses recommended for humans. All antipsychotic drug treatments examined in this study caused a statistically significant up-regulation of both the long and short isoforms of the D2 receptor mRNAs in the prefrontal and temporal cortex. Tiapride, in contrast, significantly up-regulated only the level of D2-long mRNA in these areas. The same drug treatments produced less uniform effects in the neostriatum than in the cortex: clozapine and olanzapine failed to significantly elevate either D2-long or D2-short receptor messages in this structure unlike all other drugs, including tiapride. In both the cerebral cortex and striatum, D4 receptor mRNA was upregulated by certain typical (chlorpromazine and haloperidol) and certain atypical (clozapine, olanzapine and risperidone) antipsychotic agents as well as by tiapride. Other drugs of the typical (molindone and pimozide) and atypical (remoxipride) classes had no effect on D4 mRNA levels in either cortical or striatal tissue. The finding that up-regulation of D2 dopamine receptor mRNAs was a consistently observed effect of a wide range of antipsychotic agents in the cerebral cortex but not in the neostriatum, coupled with the fact that the D2-short isoforms in the cortex were not regulated by a nonantipsychotic D2 antagonist, tiapride, draws attention to the importance of the D2 dopamine receptor in the cerebral cortex as a potentially critical, common site of action of antipsychotic medications.

PMID:
9353417
[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk