In vivo criteria to differentiate monoamine reuptake inhibitors from releasing agents: sibutramine is a reuptake inhibitor

J Pharmacol Exp Ther. 1997 Nov;283(2):581-91.

Abstract

Because monoamine reuptake inhibitors and releasing agents both increase extracellular neurotransmitter levels, establishing in vivo experimental criteria for their classification has been difficult. Using microdialysis in the hypothalamus of unanesthetized rats, we provide evidence that serotonin- (5-HT) selective and nonselective reuptake inhibitors can be distinguished from the 5-HT-releasing agent fenfluramine by four criteria: 1) Systemic fenfluramine produces a much greater increase in 5-HT than the reuptake inhibitors. 2) The 5-HT somatodendritic autoreceptor agonist, (+/-)-8-hydroxy-(dipropylamino)tetralin (8-OH-DPAT), attenuates the increase in 5-HT produced by reuptake inhibitors, but not by fenfluramine. 3) The large increase in 5-HT produced by infusion of reuptake inhibitors into the hypothalamus is attenuated by their systemic administration. However, systemic injection of fenfluramine during its local infusion does not attenuate this increase. 4) Reuptake inhibitor pretreatment attenuates fenfluramine-induced increases in 5-HT. According to these criteria, the in vivo effects of the novel antiobesity drug sibutramine are consistent with its characterization as a 5-HT reuptake inhibitor and not a 5-HT releaser. Thus, sibutramine produced increases in hypothalamic 5-HT similar in magnitude to the effects of the known reuptake inhibitors, and the increase was attenuated by 8-OH-DPAT. Also, sibutramine attenuated fenfluramine-induced 5-HT release. Systemic administration of sibutramine failed to attenuate the increase in 5-HT produced by its local infusion, suggesting that this criterion is not applicable to compounds with low affinity for the 5-HT transporter.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • 8-Hydroxy-2-(di-n-propylamino)tetralin / pharmacology
  • Animals
  • Cyclobutanes / pharmacology*
  • Fenfluramine / pharmacology
  • Fluoxetine / pharmacology
  • Male
  • Microdialysis
  • Paroxetine / pharmacology
  • Rats
  • Rats, Sprague-Dawley
  • Selective Serotonin Reuptake Inhibitors / pharmacology*
  • Serotonin / metabolism*

Substances

  • Cyclobutanes
  • Serotonin Uptake Inhibitors
  • Fluoxetine
  • Fenfluramine
  • Serotonin
  • Paroxetine
  • 8-Hydroxy-2-(di-n-propylamino)tetralin
  • BTS 54 505
  • sibutramine