Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Nature. 1997 Oct 30;389(6654):994-9.

The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans.

Author information

  • 1Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA.

Abstract

In mammals, insulin signalling regulates glucose transport together with the expression and activity of various metabolic enzymes. In the nematode Caenorhabditis elegans, a related pathway regulates metabolism, development and longevity. Wild-type animals enter the developmentally arrested dauer stage in response to high levels of a secreted pheromone, accumulating large amounts of fat in their intestines and hypodermis. Mutants in DAF-2 (a homologue of the mammalian insulin receptor) and AGE-1 (a homologue of the catalytic subunit of mammalian phosphatidylinositol 3-OH kinase) arrest development at the dauer stage. Moreover, animals bearing weak or temperature-sensitive mutations in daf-2 and age-1 can develop reproductively, but nevertheless show increased energy storage and longevity. Here we show that null mutations in daf-16 suppress the effects of mutations in daf-2 or age-1; lack of daf-16 bypasses the need for this insulin receptor-like signalling pathway. The principal role of DAF-2/AGE-1 signalling is thus to antagonize DAF-16. daf-16 is widely expressed and encodes three members of the Fork head family of transcription factors. The DAF-2 pathway acts synergistically with the pathway activated by a nematode TGF-beta-type signal, DAF-7, suggesting that DAF-16 cooperates with nematode SMAD proteins in regulating the transcription of key metabolic and developmental control genes. The probable human orthologues of DAF-16, FKHR and AFX, may also act downstream of insulin signalling and cooperate with TGF-beta effectors in mediating metabolic regulation. These genes may be dysregulated in diabetes.

PMID:
9353126
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk