Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Nature. 1997 Oct 23;389(6653):870-6.

Identification and characterization of the vesicular GABA transporter.

Author information

  • 1Graduate Programs in Neuroscience, Cell Biology and Biomedical Sciences, Department of Neurology, UCSF School of Medicine, San Francisco, California 94143-0435, USA.

Abstract

Synaptic transmission involves the regulated exocytosis of vesicles filled with neurotransmitter. Classical transmitters are synthesized in the cytoplasm, and so must be transported into synaptic vesicles. Although the vesicular transporters for monoamines and acetylcholine have been identified, the proteins responsible for packaging the primary inhibitory and excitatory transmitters, gamma-aminobutyric acid (GABA) and glutamate remain unknown. Studies in the nematode Caenorhabditis elegans have implicated the gene unc-47 in the release of GABA. Here we show that the sequence of unc-47 predicts a protein with ten transmembrane domains, that the gene is expressed by GABA neurons, and that the protein colocalizes with synaptic vesicles. Further, a rat homologue of unc-47 is expressed by central GABA neurons and confers vesicular GABA transport in transfected cells with kinetics and substrate specificity similar to those previously reported for synaptic vesicles from the brain. Comparison of this vesicular GABA transporter (VGAT) with a vesicular transporter for monoamines shows that there are differences in the bioenergetic dependence of transport, and these presumably account for the differences in structure. Thus VGAT is the first of a new family of neurotransmitter transporters.

PMID:
9349821
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk