Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Neuroimage. 1997 Oct;6(3):156-67.

Anatomic localization and quantitative analysis of gradient refocused echo-planar fMRI susceptibility artifacts.

Author information

  • 1Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

Abstract

Functional magnetic resonance imaging (fMRI) techniques, such as echo-planar imaging, can permit rapid, sensitive, whole-brain measurements of local blood flow-induced MR signal changes seen during cognitive paradigms. Changes in blood oxygenation due to mismatch of flow and oxygen metabolism cause dynamic variations in microscopic susceptibility effects, leading to the blood oxygenation level-dependent (BOLD) signal measured by fMRI techniques. A related static macroscopic susceptibility effect is known to cause artifacts that attenuate the MR signal, leading to "blind spots" in some regions of brain adjacent to bone and air sinuses. The anatomical location, spatial extent, and magnitude of signal loss artifact are quantitated for a common whole-brain fMRI technique. Resting gradient-echo EPI studies were obtained in four healthy volunteers. Signal loss was primarily localized to inferior frontal regions (medial orbital gyri and gyrus rectus) and to inferior lateral temporal lobe (including part of fusiform gyrus) bilaterally. Increased echo time (TE) uniformly produced larger artifacts. The orientation of acquired slices and choice of phase-encoding direction influenced the location, shape, and extent of the artifacts. Regions of the brain with severe artifact may have attenuated activation signal, with potential implications for the design and interpretation of fMRI studies targeting activations in these areas.

Copyright 1997 Academic Press.

PMID:
9344820
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk