Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Neurophysiol. 1997 Oct;78(4):2048-60.

Mosaic arrangement of ganglion cell receptive fields in rabbit retina.

Author information

  • 1Department of Neurobiology, Stanford University, Stanford, California 94305, USA.

Abstract

The arrangement of ganglion cell receptive fields on the retinal surface should constrain several properties of vision, including spatial resolution. Anatomic and physiological studies on the mammalian retina have shown that the receptive fields of several types of ganglion cells tile the retinal surface, with the degree of receptive field overlap apparently being similar for the different classes. It has been difficult to test the generality of this arrangement, however, because it is hard to sample many receptive fields in the same preparation with conventional single-unit recording. In our experiments, the response properties and receptive fields of up to 80 neighboring ganglion cells in the isolated rabbit retina were characterized simultaneously by recording with a multielectrode array. The cells were divided into 11 classes on the basis of their characteristic light responses and the temporal structures of their impulse trains. The mosaic arrangement of receptive fields for cells of a given class was examined after the spatial profile of each receptive field was fitted with a generalized Gaussian surface. For eight cell classes the mosaic arrangement was similar: the profiles of neighboring cells approached each other at the 1-sigma border. Thus field centers were 2 sigma apart. The layout of fields for the remaining three classes was not well characterized because the fields were poorly fitted by a single Gaussian or because the cells responded selectively to movement. The 2-sigma center-center spacing may be a general principle of functional organization that minimizes spatial aliasing and confers a uniform spatial sensitivity on the ganglion cell population.

PMID:
9325372
[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk