Send to:

Choose Destination
See comment in PubMed Commons below
EMBO J. 1997 Oct 15;16(20):6263-71.

Interplay of yeast global transcriptional regulators Ssn6p-Tup1p and Swi-Snf and their effect on chromatin structure.

Author information

  • 1Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.


Transcriptional regulation in yeast involves a number of general trans-acting factors affecting chromatin structure. The Swi-Snf complex is required for expression of a large number of genes and has the ability to remodel chromatin in vitro. The Ssn6p-Tup1p repressor complex may be involved in chromatin organization through the interaction with pathway-specific DNA-binding proteins. To study the interplay of these factors and their effect on chromatin we have analyzed SUC2 chromatin structure in wild-type cells and in strains bearing combinations of ssn6/tup1 and swi1 mutations. We have mapped nucleosome positioning of the repressed gene in wild-type cells using primer extension methodology, allowing base pair resolution, and have analyzed details of chromatin remodeling in the derepressed state. In ssn6 or tup1 mutants under repressing conditions the observed changes in SUC2 chromatin structure may be suppressed by the swi1 mutation, suggesting that Ssn6p-Tup1p is not required for the establishment of nucleosome positioning at the SUC2 promoter. Our data indicate the involvement of chromatin remodeling factors distinct from the Swi-Snf complex in SUC2 transcriptional regulation and suggest that Swi-Snf may antagonize Ssn6p-Tup1p by controlling remodeling activity. We also show that a relatively high level of SUC2 transcription can coexist with positioned nucleosomes.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk