Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Neurosci. 1997 Oct 15;17(20):7784-95.

The brain chondroitin sulfate proteoglycan brevican associates with astrocytes ensheathing cerebellar glomeruli and inhibits neurite outgrowth from granule neurons.

Author information

  • 1The Burnham Institute, La Jolla, California 92037, USA.

Abstract

Brevican is a nervous system-specific chondroitin sulfate proteoglycan that belongs to the aggrecan family and is one of the most abundant chondroitin sulfate proteoglycans in adult brain. To gain insights into the role of brevican in brain development, we investigated its spatiotemporal expression, cell surface binding, and effects on neurite outgrowth, using rat cerebellar cortex as a model system. Immunoreactivity of brevican occurs predominantly in the protoplasmic islet in the internal granular layer after the third postnatal week. Immunoelectron microscopy revealed that brevican is localized in close association with the surface of astrocytes that form neuroglial sheaths of cerebellar glomeruli where incoming mossy fibers interact with dendrites and axons from resident neurons. In situ hybridization showed that brevican is synthesized by these astrocytes themselves. In primary cultures of cerebellar astrocytes, brevican is detected on the surface of these cells. Binding assays with exogenously added brevican revealed that primary astrocytes and several immortalized neural cell lines have cell surface binding sites for brevican core protein. These cell surface brevican binding sites recognize the C-terminal portion of the core protein and are independent of cell surface hyaluronan. These results indicate that brevican is synthesized by astrocytes and retained on their surface by an interaction involving its core protein. Purified brevican inhibits neurite outgrowth from cerebellar granule neurons in vitro, an activity that requires chondroitin sulfate chains. We suggest that brevican presented on the surface of neuroglial sheaths may be controlling the infiltration of axons and dendrites into maturing glomeruli.

PMID:
9315899
[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk