Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Exp Gerontol. 1997 Jul-Oct;32(4-5):559-75.

Lifespan changes in the human hypothalamus.

Author information

  • Netherlands Institute for Brain Research, Graduate School of Neurosciences, Amsterdam, The Netherlands.


The various cell groups in the human hypothalamus show different patterns of aging, which are the basis for changes in biological rhythms, hormone production, autonomic functions, and behavior. The suprachiasmatic nucleus (SCN), the clock of the brain, exhibits circadian and seasonal rhythms in vasopressin synthesis that are disrupted later in life. Furthermore, the age-related sexual differences in the number of vasoactive intestinal polypeptide neurons in this nucleus reinforces the idea that the SCN is not only involved in the timing of circadian rhythms but also in the temporal organization of reproductive functions. The sexually dimorphic nucleus of the preoptic are (SDN-POA), or intermediate nucleus, is twice as large in men as in women, a difference that arises between the ages of two to four years and puberty. During aging a dramatic, sex-dependent decrease in cell number occurs, leading to values which are only 10-15% of the cell number found in early childhood. The vasopressin and oxytocin producing cells in the supraoptic nucleus (SON) and paraventricular nucleus (PVN) are examples of neuron populations that seem to stay perfectly intact in old age. Parvocellular corticotropin-releasing hormone-containing neurons are found throughout the PVN and are even activated in the course of aging, as indicated by their increase in number and by their coexpression with vasopressin. Part of the arcuate nucleus of the hypothalamus (ARH), or tubero-infundibular nucleus, contains hypertrophic neurons in postmenopausal women. These hypertrophied neurons contain neurokinin-B, substance P, and estrogen receptors and probably act on LHRH neurons as interneurons. The tuberal lateral nucleus (NTL), involved in feeding behavior and energy metabolism, does not show any neuronal loss in senescence. These findings indicate that each cell group of the human hypothalamus has its own sex-specific pattern of aging. In fact, some hypothalamic nuclei show a dramatic functional decline with aging, whereas others seem to become more active later in life.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk